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Hypoxic Signature of High Altitude
Acclimatization: A Gene Expression Study

Sarkar Soma *

Abstract

Indian Air Force and Army Aviation Corps routinely undertake flight to high altitude region which presents
an envirenment of hypoxia and celd. On arrival at altitude, a number of physiological changes occur which ulti-
mately enables the body to function optimally in low oxygen environment through process of acclimatization. An
integral part of the human cellular response to hypoxia fs changes in gene expression. Profiles of gene expression
patterns define the complex biclogical processes associated with both health and disease ir vive. Microarrays can
identify changes in gene expression that can be used as biomarkers of environmental and/or any other stress
related exposure and can provide information on mechanisms of various biological processes. In the present
investigation, gene expression cZhanges were analysed in sea level residents who were air inducted to high
altitude to identify gene transcripts of altitude exposure and thereby understand the mechanism of acclimatization,
Gene expression profiling was done by Atlas Powerscript labeling system, California, on Atlas Glass Microarrays.
About 89 gene transcripts showed a change in gene expression after acute induction to altitude and the transcripts
were protein coding type. Seventy three gene transcripts had a decreased expression and about fifteen transcripts
were upregulated under the high altitude hypoxic stress. The pathways found to be affected were antigen process-
ing and presentation (hsa04612), h_ctiPathway: CTL mediated immune response against target cells, GnRH
signaling pathway (hsa04912), vascular smooth muscle contraction (hsa04270), ubiquitin mediated proteolysis
(hsa04120), regulation of actin cytoskeleton (hsa04810), calcium signaling pathway (hsa04020), neuroactive
ligand-receptor interaction (hsa04080) and cytokine-cytokine receptor interaction (hsa04060). Findings of the
study indicate high altitude hypoxia has more down regulatory effect on transcript expression in peripheral blood
cells and the hypoxic signature of high altitude exposure is evidenced.
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Introduction During the initial phase of ascent to HA,

High altitude region presents an environment most sojourners experience symptoms of acute
of hypoxia and cold. Indian Air Force and Army mountain sickness (AMS) characterized by

Aviation Corps routinely undertake flight to high headache, nausea, vomiting, giddiness, anorexia

altitude and engage in different operations wherein leading to hypophagia, sleep disturbance and

exposure to the harsh environment is inescapable. adverse psychological effects (secondary),

On arrival at altitude, a number of physiological muscular weakness and depression [2].

changes occur through process of acclimatization High altitude pulmonary edema (HAPE) is a
which ultimately enables the body to function  gevere form of altitude sickness that generally

optimally in low oxygen environment. These  occurs within 6 to 48 hours of ascent beyond a
physiological responses are complex and involve a
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height of 2500 to 4000 m. Genetic predisposition
and individual susceptibility in cases of HAPE has
been postulated [3]. Mechanism of high altitude
acclimatization and/or maladaptation still remains
unclear. Gene expression responses of circulating
leukocytes can potentially provide an early warning
of threat they discover and have the potential to be
used diagnostically for direct sampling of sites of
infection or other disease processes. The present
investigation aimed at studying the gene expression
profile in individuals who were inducted to high
altitude to identify changes related to high altitude
exposure and understand the mechanism of
acclimatization.

Material and Methods

24 male low landers (weight-63.7+6 kg,
age-27.7+6 years) were included in the study who
were studied at sea level (Chandigarh at 0700h
before breakfast) and thereafter at high altitude
(Leh, Jammu and Kashmir, AMSL 3650 m).
Samples were also collected from HAPE patients
(n=6) admitted in the hospital at Leh and age
matched control subjects who did not develop
HAPE (n=4). Verbal information on the
experimental protocol and procedures were given
to the subjects after which the subjects gave their
informed, written consent to participate. The study
conformed to Institute Ethical guidelines. Lake
Luoise score was determined for each subject for
assessment of AMS and seven volunteers who
developed AMS were excluded. Samples were
treated anonymously throughout the analysis. Blood
samples were directly collected through a scalp vein

set (Beckton Dickinson) in PAXgene Blood RNA

tubes containing a stabilizing fluid (PreAnalytix,
Qiagen).

RNA isolation, preparation of labeled cDNA and
microarray hybridization

Total cellular RNA was isolated using
PAXgene Blood RNA kit (PreAnalytix, Qiagen)

2

along with on-column DNase digestion as per
manufacturer’s recommendation. Samples were
quantified by absorbance measurement at 260 nm
and integrity was analysed by native gel
electrophoresis. Total RNA (~5-7 pg) was used as
templates in reverse transcription reactions for first
strand complimentary DNA synthesis in presence
of oligo (dT)15-18 primer and 2-aminoallyl-dUTP
(Atlas Powerscript labelly system; BD Biosciences
Clontech, Palo Alto,California) following which they
were labeled by N-hydroxysuccinimide-derivatized
Cy3 (Amersham Pharmaci Ltd., Piscataway, N.J.)
(Samples of sea level) and N-hydroxysuccinimide-
derivatized Cy5 dyes (same samples at high
altitude) respectively following the protocol of
manufacturer (BD Biosciences Clontech). Samples
of HAPE and controls were labeled with Cy3 and
Universal Refererence RNA (URR, Statagene)
was labeled with Cy5). 650 pg of synthetic lambda
Q gene RNA containing an engineered poly(A) tail
was spiked into each cDNA synthesis reaction
mixture (Atlas Powerscript labeling system; BD
Biosciences Clontech, Palo Alto, California) to
provide a control for cDNA synthesis, labeling
efficiency and cDNA microarray hybridization.
Labeled ¢cDNAs were purified through FluorTrap
matrix (Atlas Powerscript labeling system; BD
Biosciences Clontech, Palo Alto, California) and
eluted through 0.22mm spin filters. Microarray
hybridization was performed on BD Atlas Glass
Microarrays (Human 3.8 I K, Clontech catalogue
no. 634638). Hybridization was conducted for 18
hours at 50°C. Following hybridization, cDNA
microarrays were washed as per the
manufacturer’s protocol and air dried by
centrifugation in a cushioned 50-ml conical
centrifuge tube at 3000 x g for 1 minute.

Image processing and Data Analysis

Hybridization signals were collected by Axon
microarray scanner (GenePix Pro 3.0) and raw spot
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intensity report was created by Gene Pix analyzer
software. Average pixel intensity within each circle
was determined and local background was
computed for each spot. Net signal was determined
by subtracting local background from the average
intensity. Genespring GX V 7.3 software (Agilent
Technologies) was used for data analysis. A Lowess
curve was fit to the log-intensity versus log-ratio
plot. 10% of the data was used to adjust the control
value for each measurement. Gene Annotation
sources included Unigene, Entrez Gene, Genbank,
and KEGG Database. Hierarchical clustering was
done using Cluster 3.0 program and visualized using
Java Tree View. Genes that showed a minimum of
0.7 fold change (to capture even the weak signals
on the array) was considered as differentially
regulated. Functional Annotation clustering was
done by Database for Annotation, Visualization and
Integrated Discovery (DAVID v 6.7 available at
http://david.abee.nciferf.gov) [4, 5].

Results

Of the 3800 sequences in the gene array, about
297 transcripts showed expression on the 3.8 K
array (expressed in at least one condition), 64
transcripts expressed in all three conditions, 49
transcripts expressed in at least 2 conditions and
184 transcripts expressed in only condition. About
89 transcripts showed a change in gene expression
after acute induction to altitude and were protein
coding type. The differentially regulated genes
belonged to both biological functions and cellular
component. Seventy three gene transcripts had a

decreased expression and about fifteen transcripts

were upregulated under the high altitude hypoxic
stress (Table 1).
receptor protein signaling pathway were

Genes of G-protein coupled
downregulated on altitude induction: these included

guanine nucleotide binding protein (GNAIJ) and
regulator of G-protein signaling 11 (RSI1I).
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Calcitonin/calcitonin-related polypeptide (CGRP),
angiotensin II receptor type 2 (ATGR?2), olfactory
receptor family 6 (OR6A2P) and gonadotropin
releasing hormone receptor (GRHR) were also
downregulated. Among the other downregulated
genes were present genes for cyclic nucleotide
gated channel (CNG/!) and mitochondrial solute
carrier family 25 (ARALARI). Genes involved in
RNA processing, regulation of transcription, RNA
processing/catabolism (PLAGL2), (APPI), zinc
finger proteins (ZNF124, MZF1), retinoic acid
receptor (RAR), genes involved in mRNA cleavage
(RNS4), RNA splicing gene [DEAH (Asp-Glu-
Ala_His) box polypeptide 16] (DBP2), mRNA
capping RNA (guanine-7-methyltransferase) were
also downregulated. Also downregulated was dual-
specificity tyrosine (Y) phosphorylated kinases
(DYRKS, DYRK2). Genes involved in defence
response like interferon alpha 14 (MGCI125756),
apolipoproein H (APOH) andforkhead box N1
(FKHL20) were downregulated on exposure to high
altitude. Transcripts involved in cell adhesion like
calcium/calmodulin dependent serine protein kinase
(LIN2) and scavenger receptor class F (SREC)
were downregulated. Antigen presenting major
histocompatibility complex class 1 (HLA-JY3 or
D6S5204), blood coagulation factor glycoprotein V
(CD42d)y and neurotransmitter synapsin I (SYNII)
were also downregulatedon high altitude induction.

Upregulated transcripts on altitude induction
were for various binding molecules viz., heme
binding (hemoglobin alpha 1), hemoglobin alpha 2
(HBAI), GTP binding (ADP-ribosylation factor like
4A, ARL4), GTP binding septin 5 (H5), RNA binding
ribosomal protein L3 type (RPL3L), protein binding
(syntaxinl A, STX1A), parathymosin (PTMS) which
is known to be involved in cellular defense response,
transporter activity related to excretion (aquaporin
5, AQPS5), gene involved in carbohydrate
metabolism (ST8 alpha-n-acetyl-neuraminide alpha




Hypoxic signature of high altitude acclimatization: Sarkar Soma

2, 8 sialytransferase, GD3S), cytochrome c oxidase
subunit VIa polypeptide involved in electron
transport (COX6AH), cell adhesion molecule
protein tyrosine phosphatase receptor
(PTPSIGMA), actin related protein 2/3 complex
involved in actin related polymerization (ARC20)
as well as chromosome 10 open reading frame 116
of unknown biological function. The prominent
functional clusters were regulation of apoptosis, T
cell activation, nxygen transport, neurotransmitter
secretion, regulation of blood pressure, regulation
of body fluid levels, cell-cell signaling, transcripts
of calcium ion binding etc (Table 2). The pathways
which were found to be affected were antigen
processing and presentation (hsa04612),
h_ctlPathway: CTL mediated immune response
against target cells, GnRH signaling pathway
(hsa04912), vascular smooth muscle contraction
(hsa04270), ubiquitin mediated proteolysis
(hsa04120), regulation of actin cytoskeleton
(hsa04810), calcium signaling pathway (hsa04020),
neuroactive ligand-receptor interaction (hsa04080)
and cytokine-cytokine receptor interaction
(hsa04060) (Table 3).

In individuals with HAPE, thirty one
transcripts were downregulated and fourteen
transcripts were upregulated when compared to
URR. In resistant control samples, twenty six genes
were downregulated and eighteen genes were
upregulated compared to URR. Although the
pattern of gene expression was distinct in the three
groups, there was overlapping also (Fig 1). Genes
like alpha 2-HS glycoproein (AHSG),

neurotansmiter transporter (SLC6A2), ADAM
metallopeptidase domain 12 (ADAM12), UDP-
glucose ceramideglycosyltransferase (UGCG)
gonadotropin releasing hormone receptor
(GNRHR), solute carrier family 6 (SLC6A2),
protein coupled receptor CD3 antigen (T3E),
aquaporin 2 (AQP2), mitochodrial ribosomal protein
149 (MRPILA9), ATP binding cassette sub family
C (CFTR/MRP), member 6 (ABCC6), lymphocyte
cytosolic protein 1 (LCP1I), distal less homeobox 3
(DLX3), keratin 13 (KRTI3), a transmembrane
glycoprotein A33 (GPA33) major histocompatibility
complex class I C (HLA-C) adenine
phosphorybosyltransferase (APRT) were more
pronounced in HAPE than in resistant controls.
Downregulated transcripts in HAPE were lysyl
oxidase-like 1 (LOXLI), Wiskott-Aldrich syndrome
protein interacting protein (WSPIP), pancreatic
popeptide (PPY), hepatic transcription factor 1
(TCF1), actin gama 2 (ACTGZ), solute carrier
family 30 (zinc transporter) (SLC30A3), protein
tyrosine phosphatase receptor type S (PTPRS) and
protein tyrosine phosphatase receptor type N
(PPRN).

Discussion

Low cellular oxygen tension (hypoxia) is a
feature of high altitude. An integral part of the
human cellular response to hypoxia is changes in
gene expression [6, 7]. Till date, more than 100
genes have been identified that show a change in
expression during hypoxic exposure, including a
number of genes that are thought to be part of a

Fig 1. Hierarchical clustering of gene expression from individuals who developed HAPE labeled with Cy3 compared to
Universal Reference RNA labeled with Cy5 (Group I), matched controls who did not developed HAPE labeled with Cy3
compared to Universal Reference RNA labeled with Cy5 (Group II) and individuals at sea level labeled with Cy3 and at high

altitude after acclimatization labeled with Cy5 (Group III).
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In the
present study, about 89 transcripts showed a change

nonspecific cellular response to stress.

in gene expression on the 3.8 K gene array after
acute induction to altitude and were protein coding
type. High altitude hypoxia appears to have a
substantial down regulatory effect on transcript
expression in peripheral blood cells. The functional
clusters of apoptosis, oxygen transport,
neurotransmitter secretion, regulation of blood
pressure, regulation of body fluid levels, cell-cell
signaling, transcripts of calcium ion binding were
evident of an hypoxic signature of altitude
acclimatization. The pathways which were found
to be affected were antigen processing and
presentation (hsa04612), h_ctlPathway: CTL
mediated immune response against target cells,
GnRH signaling pathway (hsa04912), vascular
smooth muscle contraction (hsa04270), ubiquitin
mediated proteolysis (hsa04120), regulation of actin
cytoskeleton (hsa04810), calcium signaling pathway
(hsa04020), neuroactive ligand-receptor interaction
(hsa04080) and cytokine-cytokine receptor
interaction (hsa04060).

It has been reported that continuous
residence at moderate heights (2,000-2,500 m)
tends to improve oxygen transport capacity by an
erythropoietin-induced increase in the hematocrit
[8]. An increase in hemoglobin concentration
augments maximal O, consumption (VO, ) and
enhances exercise performance [9]. In the present
study, increase in expression of hemoglobin alpha 1
and hemoglobin alpha 2 was noted on acute altitude
induction. The result of the present study suggests
that cellular response to hypoxia at the level of
transcript expression is quite broad, although it may
also be more specific to hypoxia than generally
appreciated. Fink and colleagues [10] by applying
DNA array technology and real-time PCR in a
variety of human hepatocyte cell lines identified
several previously unrecognized hypoxia-responsive
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genes; it was also seen that hypoxic exposure without
reoxygenation led to an overall decrease in the
number of transcripts expressed by cells, although
increase in expression of heat shock proteins was
not observed. In arecent study on effect of hypoxia
on gene expression in HepG?2 cells, it was shown
that gene expression was broad, had a significant
component of downregulation, and included a
relatively small number of genes whose response
was independent of cell and stress type [11].

Profiles of gene expression patterns are
helping to define the complex biological processes
associated with both health and disease in vivo.
Microarrays can identify changes in gene
expression that can be used as biomarkers of
environmental and any other stress related exposure
and their early effect and can provide information
on mechanisms of various biological processes.
DNA arrays have increased substantially in power
and complexity and application of late-generation
arrays would enable identification of more hypoxia-
responsive genes. Gene expression is often
stochastic [12] because most genes exist at single
or low copy number in a cell. Some genes are
expressed at high levels and others at low levels.
It is now possible to track mRNA expression in a
single cell with single molecule sensitivity in real
time dynamics providing mechanistic insight into
macromolecules [13]. Such kind of real time assays
together with other emerging single molecule
techniques [14] will yield further insight into not only
gene expression and but many other fundamental
biological processes. Understanding of this biological
phenomenon will strategize therapeutic approaches
for combating the harsh environment as well as
perform better under the circumstances.
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