
8� Indian Journal of Aerospace Medicine • Summer 2019 Volume 63 Number 1

Original Article

Principal component analysis: The path ahead for 
aircrew-aircraft compatibility at the Institute of 
Aerospace Medicine
P Biswal1, YS Dahiya2 
1Specialist Aerospace Medicine (Army), IAM, Bangalore, 2Specialist Aerospace Medicine (AIF), SMC, Air force Station, Pathankot (Punjab), India.

INTRODUCTION 

The Institute of Aerospace Medicine (IAM) provides design consultancy on aircraft-aircrew 
compatibility for a number of fixed-wing as well as rotary-wing aircrafts during various stages of 
development. The latest of these is the involvement of the IAM at the “drawing board” stage of the 
light combat aircraft Mk-2. Till date, cockpit compatibility of aircrew has been determined based 
on the percentile concept. Percentiles, though useful when dealing with a single parameter, pose 
major design and fitment problems when considering multiple parameters simultaneously, as in 
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aircraft cockpit design. This has led to difficulty in achieving 
conflicting design aims and often designing for unoccupied 
anthropometric zones. The concept of multivariate analysis 
has been the solution which the aviation industry the world 
over has accepted in overcoming this problem.[1-5] This paper 
presents IAMs initial foray into the field of multivariate 
analysis, specifically principal component analysis (PCA) to 
achieve desired aircrew fitment in the aircraft cockpit right 
from the design stage.

The “percentile” problem

The aim of anthropometric fitment is that the user or the designer 
specifies a certain percentage of the population, which the 
design of an aircraft cockpit must accommodate. This concept is 
primarily meant to ensure that the maximum number of aircrew 
flying a particular aircraft can do so safely and effectively. In 
this concept, a secondary aim is to avoid designing for those 
individuals who have extreme anthropometric parameters 
either large or small so that the most volume economical cockpit 
fits the maximum number of people.[6]

To achieve this aim, traditionally, a 3rd–97th  percentile or 
5th–95th percentile fitment is aimed at. Ostensibly, this seems 
to be a suitable fitment aim, wherein each parameter which is 
critical for fitment is designed such that the 3rd–97th percentile 
population of that parameter is able to fly the aircraft safely 
and effectively. However, in execution of such a concept, the 
designers and the users have followed a percentile-based 
univariate model till now.

In univariate percentile concept of fitment, the three critical 
anthropometric parameters of sitting height, leg length, and 
thigh length are considered, but sequentially. This means, the 
3rd–97th percentile population of each parameter is applied for 
fitment one by one. Theoretically, this should ensure fitment 
of approximately 96% of the population, excluding just 4% 
of the population. Therefore, theoretically, the sequential use 
of these three parameters would bring the fitment down to 
84%. In reality, there exists some overlap of anthropometric 
parameters depending on their correlation and the actual 
fitment with three criteria though not necessarily 84% is still 
well below the expected 96%.

In a study carried out at IAM, the four anthropometric 
selection parameters of the IAF were applied sequentially 
to 2445 aircrew aspirants who reported for entry-level 
medical examination. The results show that selecting 
3rd–97th  percentile of each of these parameters sequentially 
reduces the percent of fitment progressively till it reaches 
90.8% of the reported population instead of the expected 
96% [Figure  1]. As more and more critical parameters are 
considered, the fitment keeps decreasing progressively, 
even though, for each anthropometric parameter, the 
3rd–97th percentile is being considered.[3]

This problem of overall fitment percentage occurs primarily 
due to a difference in variance between the anthropometric 
parameters under consideration.

Identifying boundary parameters

Percentile, while defining the boundary parameters of any 
single parameter, does not take into account the proportional 
variability with other parameters. This leads to a second 
problem. The small pilot by the percentile concept is an 
individual with all parameters at the specified 3rd percentile 
or a large pilot has all parameters at the 97th  percentile. 
Such individuals do not exist in real life. Trying to design 
for such individuals introduces fitment regions that demand 
adjustability for ranges which do not exist in the population. 
Moreover, there exist certain pilots who would be large on 
some parameters and short on others, for example, a pilot 
with a short sitting height but a long leg length would 
sit high on the seat but with the rudder at the foremost 
position. This situation is likely to bring his knee closer to 
the main instrument panel (MIP) than permissible and 
thus be unsafe, even though he is cleared on each individual 
parameter.

With two such variables, it is possible to plot both 
on two different axes and identify an ellipse centered 
around the common mean which accommodates the 
desired percentage of the population. A  graph of height 
versus weight of 833 aircrews was plotted [Figure  2]. 
A  fitment ellipse accommodating 96% of the population 
was drawn. The boundary of the ellipse at its diagonals 
represents the individuals who are large (point 1) or small 
(point 2), respectively, in both parameters of height and 
weight. However, points 3 and 4 are the additional boundary 
points which identify individuals who are large on one 
parameter and small on the other. Figure 2 shows that 96% of 

Figure  1: Percentage of fitment as number of parameters 
sequentially considered increases for 2445 aircrew aspirants from 
2008 to 2015.
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the 833 aircrews lie within the ellipse. All the individuals who 
lie at various points on the boundary of the ellipse represent 
the extremes for different proportional variations for height 
and weight.

This concept may be carried forward to three critical 
parameters where the third axis would be orthogonal to 
the first two and the desired fitment percentage would 
form a three-dimensional (3D) ellipsoid. The number 
of boundary parameters would now contain additional 
individuals denoting the different proportions of the 
three parameters in combination. The addition of a fourth 
critical parameter leads to the formation of a hyperspace 
4D ellipsoid and is not easily plottable. In cases of complex 
spaces like cockpits, six to 12 parameters may need to be 
considered when taking into account the canopy clearance, 
the vision over the nose, the reachability of controls, the 
width of the cockpit, the distance of knee from MIP, and 
the ability to operate rudders. While the necessity to 
consider many parameters simultaneously is established, 
it is also clear that the statistical methods to establish 
boundary parameters cannot continue to be the older 
percentile-based calculations.

Multivariate analysis

The two problems of overall percentage fitment and 
consideration of proportional variation between parameters 
can be addressed using a multivariate accommodation 
method called PCA. PCA is a statistical tool for dimension 
reduction such that it reduces a large number of variables 
to two or three more manageable ones. This enables 
the designers to a select a desired percentage level of 
the population to be accommodated. This percentage 
accommodation is done in such a way that not only size 
variance but also the proportional variability is taken into 
account.[1,3,7,8]

PCA

PCA is a dimension reduction procedure which reduces 
the number of parameters needed to describe body size 
variability by combining a large number of related parameters 
into a smaller set of factors or components based on their 
correlation or covariance. From these reduced number of 
two or three factors, accommodation ellipses or ellipsoids 
can be drawn for fitting the desired percentage of the 
population. Once the percentage ellipse is drawn, it is then 
possible to identify individuals at the boundary of the ellipse 
who represent not only extreme values in some parameters 
but also combinations of proportions between parameters 
that actually exist in the population.[3,4,9]

PCA to identify boundary parameters in IAF fighter 
aircrew

A study was carried out on the data of 833 fighter aircrews 
from the IAF anthropometry survey 2013 to identify 
boundary individuals and their anthropometric parameters. 
The step-wise methodology of the study, the logic behind 
each step, and the results derived are presented sequentially 
in the subsequent paragraphs.

Step 1 (selection of critical or control parameters)

These parameters depend on the design philosophy of the 
designer and may vary from aircraft to aircraft. However, the 
basic principles of reaches and clearances remain universal. 
This study empirically uses six anthropometric parameters 
which are considered critical for the fitment of an aircrew 
in a fighter aircraft cockpit. These parameters are listed in 
Table 1.

Step 2 (standardization of data)

PCA is an exercise in maximizing variance among the 
control parameters. Raw data may have different variance 
due to the difference in the scales of data. For example, a large 

Figure  2: Bivariate plot of height versus weight showing different 
body proportion combinations.

Table  1: Critical/control anthropometric parameters for cockpit 
design.

Anthropometric 
parameters

Cockpit criticality

Sitting height Overhead clearance
Eye‑level height Internal and external vision
Acromion shoulder height Starting point for all reaches
Arm reach thumb tip 
/knuckle

Reach to controls

Thigh length Ejection path clearance and reach 
to rudders

Knee height Ejection path clearance and reach 
to rudders
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parameter such as sitting height may show a larger variance 
than a smaller parameter such as thigh length, leading to bias 
toward the larger parameter in the PCA. Standardization of 
data is done by calculation of “Z” scores for that parameter 
which is then used for PCA.[3]

Step 3 (PCA)

The PCA analysis was carried out using JASP v0.10.2 and 
PAST v3.2. The principal component factor loadings are 
given in Table  2. The same is represented graphically in 
Figure 3a-c.

The factor loadings in Table  2 represent covariance of 
variables with the principal components. The principal 
components show the following factors/descriptors of the 
entire population Table 3.

(a)	 The loadings on the first component or factor are all 
positive and uniformly loaded across all variables/
parameters. PC1 describes the overall size of the 
individuals

(b)	 The positive and negative loadings of the second factor 
PC2 contrast people with long limb/short torso body 
proportions and people with short limb/long torso body 
proportions

(c)	 PC3 shows the contrast/variation in people with long 
arms/short thighs and people with short arm/long 
thighs.

Together these three principal components explain 87.63% 
of the variation existing in the population due to the six 
parameters. Adding more components would add to just 
12% of the explained variance while adding complexity to the 
model and is therefore ignored. A scree plot of the principal 

Table 2: Critical parameters factor loading.

Anthropometric parameters PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

Sitting height 0.46 −0.33 0.09 −0.04 −0.23 −0.78
Eye‑level height 0.44 −0.38 0.03 0.21 −0.53 0.57
Acromion shoulder height 0.43 −0.37 0.04 −0.16 0.78 0.20
Arm reach knuckle 0.38 0.35 −0.83 0.17 0.05 −0.04
Thigh length 0.35 0.51 0.50 0.58 0.15 −0.02
Knee height 0.37 0.47 0.19 −0.74 −0.18 0.13

Figure 3: (a) Factor loading principal component 1. (b) Factor loading principal component 2. (c) Factor loading principal component 3.

a b

c
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components and variance explained is shown in Figure  4 
which shows an “elbow” at three components.[3,9]

Step 4 (plotting of data points and confidence ellipse/
ellipsoid)

Once the number of principal components is defined, this 
identifies the principal component space within which 
the anthropometric fitment can be carried out. With 
three identified principal components in this study, three 
orthogonal axes of PC1, PC2, and PC3 were plotted to 
define a three-dimensional space. Data from the population 
(833 fighter pilots) under consideration were plotted in this 
3D space [Figure  5]. In this study, the non-fitment of 2% 
very small and 2% very large was considered acceptable 
(as per philosophy of fitting 3rd–97th  percentile). A  96% 
confidence ellipsoid was plotted in the 3D space such that 
it encompassed 96% of the population under consideration 
[Figure  6]. The spheroid was drawn using the Cartesian 
coordinate equation of a triaxial ellipsoid centered at the 
origin with semi-axes a, b, and c aligned along the coordinate 

axes: 
2 2 2

2 2 2
x y z+ + =1
a b c

. The values of a, b, and c are derived 

from 96% of the range of the principal components PC1, 
PC2, and PC3, respectively.[10] The data points that appear in 
blue color outside the green spheroid in Figure 6 are the ones 
which had parameters outside the 96% fitment model and 
hence did not fit and were excluded.

Step 5 (identification of boundary case individuals)

The 96% confidence spheroid/ellipsoid is useful for 
visualizing the rejected data points. However, it can be 
appreciated that there exist some empty spaces in certain 
regions of the spheroid. The boundary individuals or data 
points do not coincide with the surface of the sphere in the 
cardinal directions. Therefore, in this study, three biplots 
plotting PC1 versus PC2, PC2 versus PC3, and PC1 versus 
PC3 were used to draw boundary ellipses and identify the 
boundary individuals.[3] This technique uses the same 
concept of confidence ellipse in the two-dimensional (2D) 
plane. It also utilizes a statistical technique called “minimum 
spanning tree” which minimizes the length of the edges of 
the graph. This helps in identifying those data points which 
are closest to the surface of the 96% confidence spheroid.[11] 
The three plots yielded eight boundary individuals each, 
at intersection of principal components, leading to 24 
boundary individuals/data points in Figure  7a-c. These 24 
points being derived from 2D plots were cross-validated 
with the 3D ellipsoid. Data point no. 13 which appeared to 
be a boundary point in PC1 versus PC3 was rejected as it 
actually lays well outside the spheroid. Data points 16 and 
17; 1 and 19 are of the same individuals. Therefore, one each 
of these was also deleted from the final list. This finally leads 
to 21 data points which describe the boundary individuals 

in all possible dimensions and proportions for the basic 
six parameters used in the cockpit design. The data are 
presented in Figure 8.

Application of PCA to cockpit design

The boundary individuals identified from the entire available 
anthropometry data can be used to create boundary 
manikins for use in computer-aided design (CAD) models. 
These individuals provide boundary guidelines for designers 
to determine the positions of critical design parameters such 

Figure  4: Scree plot of principal components and variance 
explained.

Figure 5: Data plotted along the three principal components.
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as location of the DEP, clearance from the canopy, location 
of controls in Zone 1, location of the MIP, and the location/
adjustability of rudders. It is essential for the designers 
to cater for tolerance zones for ejection clearance as per 
Mil 1333B when considering individual anthropometric 
dimensions in design.

Fitment of the boundary individuals ensures that if these 
individuals fit, all others would fit in the cockpit. Therefore, 

in the CAD models used in 3D designing, 3D scanned 
images of only these boundary individuals can be used to 
create 3D manikins which can be used for fitment. Later, in 
the cockpit mock-up and prototypes, only these individuals 
need to be given actual confirmatory trials. It is important to 
note that individuals who fall outside the confidence ellipsoid 
are excluded on the basis of simultaneous consideration of 
all their parameters along with proportions. The excluded 
individuals may individually be compatible on a number of 
or even all of these critical anthropometric parameters.

This study shows that the selection of critical parameters is 
the most important step in applying multivariate analysis to 
a design problem. The parameters selected must characterize 
the cockpit environment and the combination of parameters 
must be relevant to developing adjustability range within the 
space.

It is also important to decide on the threshold for acceptable 
level of explained variance. This determines the level of 
complexity of the model vis-a-vis encompassing maximum 
variation in the population. In this study, the selection of 
the first two principal components would provide explained 
variance of overall body size and proportion of trunk versus 
limbs. This would also yield only eight boundary individuals. 
This model would have been simple and the boundary 
ellipse could be drawn in 2D without involving complex 3D 
geometry. However, it is only with the addition of the third 
component that the relative proportions between the arm 
reach and thigh length could be included in the model. In 
a cockpit, the arm reach is important for reach of controls 
while the thigh length is critical for ejection path clearance. 

Figure  6:  96% Accommodation boundary confidence ellipsoid 
plotted.

Figure 7: (a) Boundary points 1–8 from PC1 versus PC2. (b) Boundary points 9–16 from PC1 versus PC3. (c) Boundary points 17–24 from 
PC2 versus PC3.

a b

c



Principal component analysis for aircrew-aircraft compatibility - Biswal and Dahiya

14� Indian Journal of Aerospace Medicine • Summer 2019 Volume 63 Number 1

Figure 8: Boundary Individuals with measurements of critical parameters in cms, graph of standardised measurements and description of 
body proportions from the Fighter Aircrew population of IAF aircrew Anthropometry survey 2013.

Table  3: Principal component analysis factor‑wise variance 
explained.

Components Eigenvalues
Total % of variance Cumulative %

1 3.560 59.333 59.333
2 1.250 20.834 80.167
3 0.448 7.467 87.634
4 0.374 6.238 93.872
5 0.250 4.163 98.034
6 0.118 1.966 100.000

Therefore, at the cost of a more complex model with more 
than 20 boundary individuals, the three-axis model was 
considered more representative of the target population.

CONCLUSION

Univariate design poses little problem for the designer 
when designing simple workspaces/equipment with one or 
two critical parameters. However, the use of more than 2 
parameters is not amenable to sequential use of percentiles. 
As the number of parameters considered increases, it leads 
to reduced fitment percentage. The use of PCA allows 
consideration of all critical parameters together at one go. 
The design aim, therefore, is changed from an unachievable 
“3rd–97th  percentile in all parameters” to an overall aim of 
“fitting 96% of the target population” in the cockpit.

The concept of multivariate analysis using PCA brings about 
a paradigm shift in aircrew-aircraft compatibility in the 
aviation industry in India.
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